
ISRAEL JOURNAL OF MATHEMATICS, Vol. 55, No. 3, 1986 

BRAUER GROUPS ARE NOT CHARACTERIZED 
BY ULM INVARIANTS 

BY 

B. FEIN,'" A. HALES"'*' AND M. SCHACHER"'* 
" Department o[ Mathematics, Oregon State University, Corvallis Oregon 97331, USA ; and 

~Depanment o[ Mathematics, University of California, Los Angleles, California 90024, USA 

ABSTRACT 

Two important invariants of a field F are its Brauer group B(F) and its 
character group X(F). If F is countable, these are countable abelian torsion 
groups, and so are determined by their UIm invariants. We show here that 
Ulm's invariants do not determine Brauer groups or character groups of 
uncountable fields. An essential tool, which is entirely group theoretic in nature, 
is a fact about ultraproducts of torsion groups. 

1. Introduction 

Fein  and  Schache r  s tud ied  U l m  invar ian ts  of the  B r a u e r  g r o u p  and  cha rac t e r  

g roup  of a field in [1]-[4] in an effort  to cha rac t e r i ze  these  groups .  This  r e sea rch  

led to the  fo l lowing t h e o r e m  (p. 532 of [4]): 

THEOREM A.  If  E is a field which is finitely generated over a global field, E ,  

the pure function field over E in n variables, and B ( E , )  the Brauer group of E, ,  

then B (E , )  ~- B (Era) provided n, m >-_ 1. 

The  p roo f  of T h e o r e m  A p r o c e e d s  f rom the  o b s e r v a t i o n  that  the  fields in 

ques t ion  a re  coun t ab l e ,  and  so the i r  B r a u e r  g roups  and  c h a r a c t e r  g roups  a re  

coun tab l e  as well ,  and  thus are  cha rac t e r i zed  by  thei r  UIm invar iants .  This  leaves  

open  the ques t ion  of w h e t h e r  B r a u e r  g roups  and  cha rac t e r  g roups  of  uncoun t -  

ab le  fields a re  necessar i ly  cha rac t e r i zed  by the i r  UIm invar iants .  W e  show in this 

p a p e r  tha t  they  are  not.  

F o r  the  mos t  pa r t  we will k e e p  the no t a t i on  and t e r m i n o l o g y  of [1]-[4];  we 

out l ine  be low some  of the  def in i t ions  and no t ions  which ar ise.  
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Let G be an abelian torsion group; we will always consider G as an additive 

group. Our standard reference for abelian group theory will be [7]; all results we 

will need on infinite abelian groups are proved there. If p is a prime, we set 

Gp = the p-primary subgroup of G. Then one has the direct sum decomposition 

(Theorem 1 of [7]): 

G-~ ~ Gp 
P 

where the direct sum runs over all primes p. To characterize G, it is enough to 

characterize the primary components G~. Theorem 3 of [7] gives 

Op~-D.~Rp 

where D,  is the maximal divisible subgroup of Gp, and Rp is a " reduced"  

p-group, i.e. Rp contains no divisible subgroups, and is unique up to isomorph- 

ism. Dr as a divisible p-group is a direct sum of copies of the group Z(p~), and so 

is characterized by its rank - -  the number of copies of Z(p®). We write rp (G)  for 

this divisible rank. 

For invariants of Rp, we set P = {x E Rp I px = 0}. For any ordinal A, we define 

inductively: 

Rp(0)=Rp,  Rp(X+l)=pRp(A), and Rp(A)= f'l Rp(fl) 
It<X 

if A is a limit ordinal. 

The smallest ~. with R, (A) = 0 is called the Ulm length of Rp, and written lp (G). 

If P, = P FI Rp (X), then the 3,-th Ulm invariant of G at p is 

Up(A, G ) =  [P~/P~÷,: Z/pZ] 

= the dimension of PA/P~÷~ over the field of p elements. 

Ulm's theorem ([7], Theorem 14]) says that the invariants U , (A ,G )  are a 

complete set of invariants for Rp when Rp is countable. In any case, these 

dimensions are invariants of G. 

By the Ulm invariants for G we will mean the entire set of invariants rp(G) 
and Up(A,G), 0=<a < lp(G), for all primes p. 

In Section 3 we construct two fields K and L for which the Brauer  groups 

B (K)  and B (L) have identical Ulm invariants but are not isomorphic. In Section 

4 we prove similar results for character groups. All of these constructions depend 

on a (essentially known) result about ultraproducts of p-groups; for complete- 

ness we prove this result in Section 2. 
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In all that follows, we will let to denote the first infinite ordinal and also the 

corresponding cardinal, and q¢ the cardinal 2 ". If g is an element of an abelian 

group G we denote by (g) the cyclic group generated by g. T ( G )  will denote the 

torsion subgroup of any abelian group G. Our symbol for the empty set will be 
O. 

2. Ultraproducts of p-groups  

The following notation will be in force through this section: 

I = {1,2, 3 . . . . . . . .  } the set of positive integers, 

p a fixed prime, 

a non-principal ultrafilter on /, 

G~ for each i E / ,  a reduced abelian p-group, 

G = II~ G~ the ultraproduct of the G,, 

T = T ( G )  the torsion subgroup of G. 

THEOREM 1. (1) T = D 0 To where D is the maximal  divisible subgroup o[ T, 

and To is a reduced p-group of Ulm length <= to. 

(2) I[ all the G~ are isomorphic to an unbounded p-group H, then T,, is not a 

direct sum of cyclic groups. 

PROOF. A quick proof of this would go as follows: G is tol-equationally 

compact and therefore algebraically compact. The structure theory for algebrai- 

cally compact groups then gives the desired result on T and T,,. For details on 

this approach see Fuchs [6], Chapter 7 (see also Eklof [0]). We give here a proof 

which is self-contained modulo Kaplansky [7]. 

(1) Since T and To are clearly p-groups, it will suffice to show that for each 

g E T, either g lies in a divisible subgroup of T or g has finite p-height h (g) (see 

[7], Sections 9, 10). 

Choose a representative tuple (g~) for g. For each integer n > 0 ,  let I, = 

{i I h(g~) = n}. If I, E f f  for some n, then clearly h(g)  = n. Thus we may assume 

all I, ~ ~. The union of the I , 's  may not exhaust I, so we choose a partition 

I =  JoUJ,  U . . . U J . . . .  where: 

(i) I, C J, for each n, 

(ii) J. ~ ,~ for each n, 

(iii) J. O J,. = O if n # m. 

Thus, for each i E L if i EJ,,(o, we have h(g~) >- n(i).  For such i we choose 

h ('~ h m h~ "° with ph(, '~= g~, ph(~ ~ h "~ elements .., , , , . . . ,  = , , . . .  etc. Now define ele- 

ments h "~, h m , . . . ,  h (k~ . . . .  of T as follows: for each k, h (~ is represented by the 

tuple (h~k'). (Since {i E I I  h (g , )<  k}et ~, we may let the h~ k~ be arbitrary if 
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k > n(i).) Then the elements g, h w, ht2~,.., generate a copy of Z(p ~) in T, since 

p(h~k+lJ) = hl k~ for those i with h(g~)_->k+l,  and this set is in ~, giving 

ph ~k÷l~= h ~k~ and ph t~= g. 

The proof of (2) in Theorem 1 will require several reductions. For each i, let B~ 

be a basic subgroup of G~, so: 

(a) G~/B, is divisible, 

(b) B~ is a direct sum of cyclic groups, 

(c) B~ is pure in G~. 

The B~ exist by [7, Lemma 21]. (It should be noted that Lemma 21 of [7] is stated 

under the hypothesis that G, has no elements of infinite height, but the proof 

does not require this. For an alternate proof see Fuchs [6], Theorem 32.3.) Set 

B = T([I~ B~) considered as a subgroup of T. 

CLAIM 1. B is a pure subgroup of T, and B + D = T. 

CLAIM 2. If g~ ~ G~, we can write g~ = b~ + x~ where b~ E B~, o(b~)<= o(g~), 

o(x,)<= o(g~), and h(x,)_- > i. 

We prove Claim 2 first: say g E G~ has order  p ' ,  and write g for its image 

(mod B,). Then o ( g ) = p "  for m_-< n, and by (a) we have g =p~/~ where 

E G~/B, has order p m÷,. Since B~ C G~ is pure, there is an element y E G~ with 

)7 =/~ and o(y)  = o(/Y) = pro+, by [7, Lemma 1]. Set x~ = p 'y  and b~ = g - x,, so 

b ~ B ,  as / ~ = g - p ~ / ~ = 0 .  Now h(x,)>=i since x ,=p~y,  and o ( x ~ ) = p ' ~  

o(b~) <-_ max(o(g),  o(x,)) = o(g). 
We can now prove Claim 1: suppose g ~ T. It is clear that B is pure in T since 

each B~ is pure in G~. Let (g~) be a representative tuple for g, and g~ = b~ + x~ the 

decomposition of Claim 2. The g~ have bounded order  (on a set in ~ )  since 

g U T, and so b~ and x, do also. Then g = b + x where b = (b,), x = (x,), and x 

and b are both in T since their components have bounded order  on a set in ,~. 

Clearly b E B, and (1) of Theorem 1 shows x E D. Thus B + D = T. 

Now consider the projection of B on the direct summand To of T. This 

projection is surjective by Claim 1 and has kernel B N D. The elements of 

B O D have infinite height in T, and so infinite height in B since B C T is pure. 

Then these elements lie in a divisible subgroup of B by (1) applied to B, i.e. 

B n D is divisible. It follows that B -- (B O D ) ~ )  T~,, with B n D the maximal 

divisible subgroup of B. Hence,  without loss of generality, we may assume 

B~ = G~, i.e. each G~ is a direct sum of cyclic groups. 

We have not yet used the assumption that all G, are isomorphic. We note, 

however, that some such hypothesis is crucial: if the supports of the Ulm 
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invariants of the G, are pairwise disjoint, then To will be trivial, i.e. T = D will 

be divisible. Say now all G~ ~ H, where H is an unbounded direct sum of cyclic 

p-groups. 

It will be sufficient to consider the case when all Ulm invariants of H are 0 or 

1. This follows since any H not of bounded order  contains a direct summand H '  

of this sort. Taking G'~ to be the corresponding subgroup of (3,., then T(H~G'~) 

will be a direct summand of T, and its reduced group T~'~ will be a subgroup of To. 

Since subgroups of direct sums of cyclic groups are direct sums of cyclic groups 

([7, Theorem 3]), it will suffice for our purpose to show T~ is not a direct sum of 

cyclic groups. 

The argument when all Ulm invariants are 1 is typical, so we consider this 

case. We have G~ = ET=~ G~j where G~j = (g~-) and g~j has order  p(  To show that 

T,, is not a direct sum of cyclic groups, it will suffice to find a subgroup of To 

which is not a direct sum of cyclic groups. The "s tandard"  example of a p-group 

with no elements of infinite height which is not a direct sum of cyclic groups is 

the torsion completion of our  H, i.e. U = T(IIT=~(h~-) ) where hj has order  pi and 

we have taken the complete direct product. We will construct an embedding 0 of 

U into T,,. 

Let h E U with h = (ljhj), so there is a bound on the orders of the ljh~, lj ~ Z. 

We define O(h)  to be the image of the representative tuple (g,) where: 

gl = l ,g, , ,  

g,_ = llg21 + l,_g2,_, 

gi = ltgil  + l~_gn_+ "'" + lig,, 

The g~ have bounded order  since o(h , )  = o(g~) = pJ, and so (g~)E T. It is easy to 

see that 0 induces a homomorphism from U into T. Furthermore,  0 is 1-1 since 

O(h) = 0 ~ g~ = l,g~, + . . .  + l,g, = 0 

for infinitely many i 

llgn = 12giz . . . . .  lig, = 0  :::), l ,h,  = b_h2 . . . . .  lihi = 0  :::), h = 0 .  

It is straightforward to check that the image of 0 is pure in T. Any element in 

O(U)Cl  D has infinite height in T, and so infinite height in O(U).  But U has no 

elements of infinite height, so O(U)  has no elements of infinite height. 

Therefore,  O(U)  N D = 0, so O ( U )  is contained in an isomorphic copy of To, as 

required. This completes the proof of Theorem 1. 
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Two remarks are in order.  We will need to know something about the Ulm 

invariants of To in (2) of Theorem 1 when all G~ ~ H and H is countable. In that 

case, we have: 

(2.1) The n-th Ulm invariant of To will coincide with that of H when Up (n, H )  

is finite and will otherwise be equal to q¢ = 2 ~. 

(2.2) Theorem 1 remains valid if all G~ = K G H where K is a divisible 

p-group and H an unbounded reduced p-group. It was easier to formulate the 

proof without worrying about K. 

3. Applications to Brauer groups 

Let K be a field of characteristic 0. For any integer n _-> 1 we write e(n) for a 

primitive n-th root of unity over K. We denote,  as in [1]-[4], X(K) for the 

character group of K and B(K) for the Brauer  group of K. We are interested in 

how these groups are evaluated when K is an ultraproduct.  For the general 

set-up, we have: 

I ={1 ,2 ,3  . . . .  }, 

,~ a non-principal ultrafilter on I, 

K~, for each i E I, a field of characteristic 0, 

p a prime, 

K = rL~ K~. 

K is then a field of characteristic 0. Suppose L ~ K is a field extension of 

dimension n. Then L = II~ L~ where L~ ~ K~ is an n-dimensional field extension 

of K~ for a set of i in ~. Say now M D L is a cyclic extension of L of dimension 

p a. Then M = l-I~ M~ where M~ D L~ is cyclic of dimension p ° for a set of i in ~:. 

Conversely, the L~ and M, determine L and M. Using the correspondence 

between cyclic extensions and characters of [1]-[4], we get: 

The situation for the Brauer group is more complicated. In general, B (L)p is 

not equal to T(l-I~ B (L)p).  If, for instance, L~ supports a central division ring D~ 

of exponent  p but index p~, then D = II~D~ will be a division ring which is not 

finite-dimensional over L, and so does not represent a class in B (L)p. However ,  

the expected correspondence makes sense if the L have the additional property 

on central division algebras that exponent  and index are equal; this applies if, for 

instance, the K~ are number fields. It holds also if the K~ are algebraic over the 
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rational field Q. To see this, let V be a field algebraic over Q and D a 

finite-dimensional central division algebra over V. Then D is of form D = 

D.@~.  V where V. is a number field and D.  is central over V,,. The equality of 

exponent  and index for D follows from the equality of these invariants for Do. 

We have: 

(3.2) If exponent  and index are equal for central division algebras over Li, 

then B (L)p ~ T(II~ B (L)p).  This holds in particular if all L are algebraic over 

O. 

Let F = Q3(e (8)) where Q3 is the field of 3-adic numbers. We use F to define a 

set of integer invariants with which we will construct an algebraic extension k of 

Q. Let f be the function from primes to positive integers given by: f(2) = 3, and 

for odd p, f ( p ) =  maximum m so that F(e(p))= F(e(pm)). Let ko=Q(e(8)). 
Note that 2"-th roots of unity over any field containing ko become cyclic, and ko 

contains no other  roots of unity than the elements of (e (8)). If p is an odd prime 

and m = f(p) as above, then ko(e(pm)) decomposes as a product of fields: 

k,,(e (p " )) = A (p) @~, B (p) where [A (p): k0] = p - 1 and [B (p): ko] = p m 1. 

We define k to be the field obtained from k0 by adjoining to ko all of the fields 

B(p). The crucial property of k is: 

(3.3) k(e(p))= k(e(pm)), m = f ( p ) ,  and k ( e ( p ) ¢  k(e(pm÷')). 

We remark that we de not know whether k is in fact a number field. The point 

is those p with f ( p ) >  1 satisfy 3 p ~ -= 1 (mod p2), and only for these p is B(p) 
non-trivial. It has been conjectured that this congruence has solutions for only 

finitely many p;  the truth of this conjecture would imply only finitely many 

non-trivial B(p), so k would be finite-dimensional over Q. However,  to our 

knowledge this conjecture remains a famous unsolved problem. 

We are now ready to construct our example. For each i E I, let K~ = k, where 

k is the algebraic extension of Q constructed above. Set K = II.~ K~. Then K is a 

field for which (3.1) and (3.2) apply. Set L~ = K(t) for t an indeterminate over K. 

Let  L2 = F(t) where t is an indeterminate over F = Q~(X/~- 1) = Q3(c(8)). 

THEOREM 2. B(Lt)  and B(L2) have identical Ulm invariants at all primes p, 

but are not isomorphic. In fact, for any p, B (L2)p is a direct sum of a divisible group 
and cyclic groups, whereas B(L~)e has no such presentation. 

PROOF. If E is any field of characteristic 0, then by the Auslander-Brumer  

theorem (see e.g. [3, 2.1]): 
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(3.4) B(E(t))p ~- B(E)p 0 0 (X(M)p) 
IEI 

where M runs over all finite extensions of E, and each summand X(M) occurs 

[E I times, I E I = cardinality of E. 

It follows that rp(B(L,)) = ~ for i = 1 or 2. We fix a prime p, and must show 

that the reduced parts of these groups have matching Ulm invariants at p. First 

let E = K. Then B(E)p = T(II~B(k)p). Each B(k)p is divisible since k0 has no 

real embeddings (see [5, Theorem 2]), and so B(E)p is divisible. 

Each factor X(M)p on the right side of (3.4) is a divisible group plus a reduced 

group of Ulm length =< to by (3.1) and Theorem 1. Moreover, every such Ulm 

invariant in B(E(t)) is qg if it is non-0 by (3.4) since the cardinality of E is c~. 

Since M(e(p))=M(e(p')) ,  m =f (p ) ,  we have Up(A,X(M))=O for 0_-<A _-< 

f ( p ) - 2  (if f(p)>-_ 2) by [4, Lemmas 6 and 7]. 

To find the invariants of X(K)p at finite ordinals, we must first find the 

invariants of X(k)p. We have Up()t,X(k))=O for any prime p if 0_--<A =< 

f ( p ) - 2  by (3.3) and [4, Lemmas 6, 7]. Let p be a prime, m = f ( p ) ,  and 

n >_-m-1 an integer. For k0 = Q(e(8)) as before, we set S = ko if p = 2  or 

S - - t h e  unique subfield of k of dimension p,,-1 over ko if p is odd. Then 

S(e (p)) = S(e (p")),  and S is a number field. By [4, Lemma 8], Up (n, X(S)) = to. 
We obtain k from S by a sequence of field extensions all of dimensions prime to 

p; by the restriction-corestriction argument of [1, Theorem 3], Up (n, X(S)) = to 

for any subfield S, S C S C k, S finite-dimensional over S. Passing to the limit, 

U~(n,X(k))= to. Then from (2.1) and (3.1), U~(n,X(K)) = ~. For any finite 

extension M of K, Up (A, X(M)) = 0 for A _-> to by (3.1) and Theorem 1. Putting 

these facts together, the right side of (3.4) gives these invariants for any prime p: 

(A) Up(A, B(L 0 = c£ for f ( p ) -1  _-< A < to, and 

Up (A, B(L,)) = 0 for 0 _-< A < if(p) - 1. 

(B) Up(A,B(L,))=O for A _->to. 

Now let E = F(t), F = Q3('X/~- 1) = Q3(e 

X(M) is a direct sum of a divisible group 

M(e(pm)), m = / ( p ) ,  we have exactly as 

i f (p ) -  2. Also, B(F) = Q/Z is divisible. 

(8)). If M is any finite extension of F, 

and a finite group. Since M(e (p))= 
above: Up (A, X(M)) = 0 for 0 =< )t =< 

Now suppose p is fixed and n > - f ( p ) -  1. Suppose first p ~ 3 .  Let M be the 

field obtained by adjoining a p"+l-th root of unity to F. Then, in the language of 

[4, Section 3], 4~(M,p) = n + 1. Suppose 1r is a prime element of M, and S~ the 

cyclic extension of degree p"+l over M obtained by adjoining a p"÷Lth root of 7r. 
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Let S C $1 be the unique subfield of dimension p over M. Then the arguments of 

[4, Section 3] show that S/M corresponds to an element of order p in X(M) 
which has height equal to n (since S/M is tamely ramified for p #  3). It follows 

that Up (A, X(M)) ~ 0 when )t = n. Thus, for p ~  3, the right hand side of (3.4) 
has exactly the Ulm invariants prescribed by (A) and (B) above. 

Now let p = 3. Note that f(3) = 1. Let M be the field obtained by adjoining a 

3'-th root of unity to F. Then by [4, p. 526] (see also H. Koch, Galois Theorie der 
p-Erweiterungen, Springer-Verlag, New York, 1970) X(M)3 has a direct sum- 

mand which is a cyclic group of order p'. Thus X(M)3 has an element of height 

t - 1, and so U3(t - 1, X(M)) ~ O. We conclude U3()t, B(L~.)) = ~ for 0 _-< A < to, 

and so (A) and (B) hold for p = 3 also. 

We have demonstrated that the B(L~) have identical Ulm invariants at all 

primes. We must show they are not isomorphic. Consider first L_~. Since every 

term X(M) on the right side of (3.4) is a direct sum of divisible groups and cyclic 

groups in this case, and B(E)~-Q/Z, we conclude B(L~) is a direct sum of 

divisible and cyclic groups. For L~: Applying (2) of Theorem 1, (3.1), and 

[7, Theorem 3], we conclude B(L,) has no presentation as a direct sum of 

divisible and cyclic groups. Thus the B (L~) have distinct p-primary components 

for all primes p. 

4. Applications to character groups 

We need one further result about character groups of function fields. Suppose 

F is a field of characteristic 0 containing only finitely many p-power roots of 

unity, and t is an indeterminate over F. We assume F contains 4-th roots of unity 
if p = 2. Since we could not find any reference to Theorem 3 in the literature, we 
include a proof here. 

THEOREM 3. Under the hypotheses above, X(F(t))~, ~ X(F)p 0 A, where A is 
a direct sum of copies of Z(p ~) and cyclic p-groups. 

PROOF. For any n => 1 let X(n) denote the elements of exponent p" in 

X(F(t))p, and Y(n) the elements of exponent p" in X(F)p. Then X(F(t))p 
(respectively X(F)p) is the direct limit of the sequence 

X(1)C X(2)C X ( 3 ) C - . .  (respectively Y(1)C Y(2)C Y ( 3 ) C . . .  ). 

There is a natural injection from Y(n) into X(n) - -  we identify Y(n) with its 

image under this injection. 

Henceforth we use the notation and terminology of [8]. Let q = p" and let p 
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be a primitive q-th root of unity over F. Set E = F(O ) and s = [E: F]. We 
assume s > 1; this will hold for sufficiently large n. The hypotheses guarantee 
that the Galois group of E/F is cycli~ of order s generated by some element cr. If 

s = pks' where p 3" s', then there is a unique subfield E' of E with [E': F] = p~. 

This E '  corresponds to a subgroup Y'(n) of Y(n). We first show that 
Y(n)/Y'(n) is a summand of X(n)/Y'(n). 

By [8, Lemma 2.2] we may assume tr(p) = p~" where (m s - 1)/q is prime to p. 

Let K=E(t ) ,  and extend o- to K by ~ ( t )=  t. Define ~b: K*--*K* by 

,~ (x) = x "'-'(~ (x))m'--'(~,-'(x ))m,-~...  ( ~ - ' ( x ) ) .  

Then by [8, Theorem 2.3] 

X(n )/Y'(n)= 6(K*)/6(K*)t3 (K*) q -~ 6 (K*). (K*)q /(K*) q, 

i.e. X(n)/Y'(n) is isomorphic to the subgroup of K*/(K*) ~ generated by images 

of elements of th(K*). Similarly 

Y(n)/Y'(n) ~ 6(E*)/4~(E*) N (E*) q ~ 6(E*)(E*)q/(E*)L 

Now let M be the collection of monic irreducible polynomials in F[t]. For 

each f ~ ~ ,  let si t be the collection of monic irreducible factors of f in E[t]. 
Then unique factorization gives the following decomposition of K*: 

(4.1) K * =  E * @  1~  ( s ~  (g)) . 

Since both ~b and "q-th power" respect the outer decomposition in (4.1), we 

obtain a corresponding decomposition of X(n)/Y'(n): 

(4.2) X(n)/Y'(n)= Y(n)/Y'(n)(~) ~, X(n,f)  
! 

where the X(n, f) will be described below. 

We now pass to the direct limit, recalling that taking direct limits is an exact 

functor, to obtain the short exact sequence 

(4.3) 0-+ lim Y'(n)-~ X(F(t))p-+ [X( f )p / l im  Y ' ( n ) ] ~  ~ lim X(n,f)--~O. 

(Here we use the fact that the injection of X(n)  into X(n + 1) induces, in (4.2), 
the obvious injection on the first f a c t o r -  and, on the second factor, the map 

induced by the "'pth power" map K*/(K*)P"--~K*/(K*+) p .... where K+ = K(IS) 

for ~ a primitive p"+Lst root of unity.) 
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Now observe that lim Y' (n)  is divisible, in fact isomorphic to a copy of Z(p~). 

Hence the sequence in (4.3) splits, as does 

0 --* lim Y'(n )----~ X(F)p ~ X ( F ) p / l i £ n  Y'(n)----~ O, 

so we obtain 

(4.4) X(F(t))p -~ X(F)p (~ ~'~ lim X(n,  f). 
f 

Now we describe the X(n,  F). Let Mr = {gl . . . .  , g,} where tr(gl) = gz, or(g2) = 

g3 . . . . .  t r (g , )=  gl. We have s = ra for some a. The group ( g , ) ( ~ . . .  O (g r )  is 

isomorphic to Z' in the standard way, and under this isomorphism X(n,  f)  can be 

described as follows: X(n,  f)  is isomorphic to the subgroup of Z' /qZ" generated 

by the images of the r-tuple 

bl = (m 5-~ + m ~-'-1 + • • • + m ' - l ,  m s -2+  m ~ - ' - 2 +  • • • + m ' - 2 , . . . ,  m s - r  

+ m~-2' + . . . +  1) 

and its right cyclic shifts b2, b3 , . . . ,  b,. Now mb, - bz = (m ~ - 1,0, 0 . . . .  ,0), so the 

images m/~ and /~2 are equal in Z' /qZ ' ,  and similarly for rob2- b3, etc. Hence 

/~, . . . . .  /~, all generate the same cyclic subgroup of Z' /qZ ' .  Its order  is q divided 

by the highest power of p dividing m e-" + m ~-2" + . . .  + 1 = (m e - 1)/(m r - 1) 

and hence, since q = p n exactly divides m ~ - 1, we conclude that X(n,  f )  is cyclic 

of order  p~ where p~ exactly divides m '  - 1. This completes the description of 

X ( n , f )  which, together with (4.4), gives the conclusion of Theorem 3. 

We are now ready to produce an example of character groups with matching 

UIm invariants which are not isomorphic. In our next example, the divisible 

parts will not match, but the reduced parts will provide an interesting example. 

We will produce an example in Theorem 6 for which all invariants match, the 

divisible parts included, but the character groups are still not isomorphic. 

Let F~ be the field K of Theorem 2; K = II~,K, where each K, is the specified 

algebraic extension of Q(e(8)). Let F2 be the field L2 of Theorem 2; L2= 

Q3(8 (8), t) = F(t),  F = Q3(e (8)). We set R ( X ( E ) )  to be the reduced group of the 

character group X(F~), i = 1,2. We have: 

THEOREM 4. R (X(E)) ,  i = 1,2, have identical Ulm invaraints for all primes 
p, but R ( X ( F~ ) ) is not isomorphic to R ( X ( F2 ) ). In fact, for any prime p, R ( X ( Fz ) )p 
is a direct sum of cyclic groups, whereas R (X(FI))p has no such decomposition. 
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PROOF. We worked out the Ulm invariants of X(F1) in the course of proving 

Theorem 2. Using the function f(p) of Theorem 2, these are given by: 

(a) up (h, X(FO) = c¢ if f(p) - 1 <= h < to, 
(b) Up (A, X(F~)) = 0 if 0 =< h < f(p) - 2 or A => to. 

We show now that the invariants of X(F2) match (a) and (b). We established 

during the proof of Theorem 2 that Up (A, X(F2)) = 0 for 0 < )t _-< f ( p ) -  2. Also, 

RX(F2) is a direct sum of cyclic groups by Theorem 3, so (b) is satisfied. 

It remains to show that (a) holds. Let p be fixed, and take n >= f ( p ) -  1. We 

will show that F2 has c¢ independent cyclic extensions of dimension p corres- 

ponding to elements of order p and height n in X(F2)p. Let M be any finite 

extension of F containing a primitive q-th root of unity, q = p". M may be 

considered a residue class field of F2 with respect to the discrete rank 1 valuation 

u of F2 corresponding to the irreducible polynomial f ( t )UF[t] ,  f ( t )  the 

irreducible polynomial of any primitive element of M/F. As in the proof of 

Theorem 2, we construct the cyclic extension S~ of M: 

S, D S D M ,  

where S1/M has dimension q, [S: M] = p, and any character for S / M  has height 

n in X(M)p. 

Using Saltman's lifting theorem [8, 5.8], there is a cyclic extension T~ D F2 of 

dimension q so that v is inert in T~ and the residue class field of T~ is S~. Let 

T/F2 be the layer of dimension p in T~, and X a corresponding character of order 
p .in X(F2)p. By Lemma 2 of [4], X has exact height n in X(F2)p. Since there are 

c¢ independent choices for M and v, there will be ~ independent extensions of 

this sort by the argument of [4, Theorem 19]. This shows that the UIm invariants 

of X(F2) obey (a) above. (These invariants can also be deduced from the explicit 

calculation of the X(n, f ) in  (4.3).) By (2)of Theorem 1 and (2.1), RX(F~)p is not 

a direct sum of cyclic groups for any p. This concludes the proof of Theorem 4. 

Note that the divisible subgroups of X(F,)p and X(F2)~ do not match; in fact 

rp(X(F,)p) = c~ while rp(X(F2)~)= 1. 
Our last example will provide two fields whose character groups have identical 

UIm invariants, divisible parts included, but these character groups will be 

non-isomorphic. 

LEMMA A. Let F be a .field, I an index set which is not necessarily countable, 
F[x~]~, the polynomial ring, and ~ a partition of I such that each c E .~ is .finite. 
For each c E ~ let tc = l-l~cc x~. Then every irreducible polynomial in the polynomial 
ring F[tc]c~ which is not a monomial remains irreducible in F[x~]~,. 
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PROOF. Suppose, to simplify notation, we have t = t~ = x~x2.." x,, A = 

F[x , ]~ ,  and B = F[t, 1/t]. Then every irreducible e lement  of F[t] remains 

irreducible in B unless it becomes a unit, i.e. unless it is a monomial .  Set 

C = B[x~ . . . . .  x~_t]. Then D = C[I/x~ . . . . .  1/x~_~] coincides with 

A [1/x~ . . . . .  1/x~ ], i.e. the result of localizing C at x~ . . . . .  x,_~ is the ring obtained 

by localizing A at all of x~ . . . .  , x,. As C is a polynomial  extension of B, an 

irreducible element  of B remains irreducible in C;  if such an e lement  is not a 

monomial  it will remain irreducible in the localization D. As D is also a 

localization of A, irreducible elements  of D coming f rom A must have been 

irreducible in A. If we argue this way by adjoining all monomials  t¢ we get the 

desired result. 

Now let F be a field, say F = Q or Q3, and let 5e be an index set of cardinality 

(¢ = 2" .  For each n => 1 let p, be a primitive 3 ~ -th root of unity. For each i E SF 

and each n => 1 let x~'~,x~ "2 . . . . .  x7 "*~3°~ be indeterminates which we adjoin to 

F (p , )  to obtain 

subject to the relations 

~'k)i E,,/, E~ = F(p~)(x ,~k~,c3°~ 

(,) Xin+l'k X ~+ I"k ÷6t3")X ~ +t'k + 2 ' / ' f 3 ~ ) .  = Xin'k . 

Let E~ = lim En. 

Let ~r be the automorphism of F(p, ) which is the identity on F and maps p, to 

p2. We assume tr is the generator  of the cyclic group G a I ( F ( p . ) / F )  and that this 

group has order  ~b(3°); this is valid if F = Q or F = Q.~. Extend ,r to each E~ by 

defining o-(x~ "k) = x, "'~*' for each k < ,/)(3"), o-(x7 "*(3°~) = x~"'. The relations (*) 

guarantee that the defining relations of tr are compatible  for different n, so tr can 

be considered as an automorphism of E~. For  any polynomial f in the x? "k, we 

also write f "  for tr(f).  

For each n let F. be the fixed field of E,  under o-, and let F~ be the fixed field 

of E~ under or. Then we have 

F~ : lim F. .  

THEOREM 5. X(F®)3 ------- X(F)3 (~) Z ~) ~ where Z is divisible of rank c¢ and ~, is 

a direct sum of cyclic groups. 

PROOF. We have X(F®)3 = li__m X ( F , ) =  li__m X(F.)~[3" ], where the latter de- 

notes the elements  of exponent  3" in X(F,)3. Hencefor th  we write X ( n ) =  

X(F,)3[3"l . 
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Now observe that E. = F. (p.). The Galois group of E./F,, is cyclic of order 
s = ~b (3") generated by tr, and the results of [8] apply. We use the results of [8] to 

obtain compatible decompositions of X(n). 
Define ~ .  : E* ~ E* by 

= x 2'-'.  2"-'-. (x° : )  2 ' - ' . . .  (x° ' - ' ) .  

Then it follows from [8, Theorem 2.3] (as in the proof of Theorem 3) that 

X(n )/Y'(n ) ~ dp(E *). (E*)3" I(E ,)3-, 

the subgroup of E*,/(E*) r generated by images of elements of @(E*.). Here  

Y'(n) denotes the subgroup of X(n)  corresponding to the subfield of F(p,) of 
dimension 3 "-1 over /7,. Similarly, if Y(n)  = X(F)313"], we have 

Y(n )/Y'(n ) ~ ~(F(p, )*). (F(0,)*)3"/(F(p, )*)3". 

Now E. is the quotient field of the polynomial ring R,  = 

F(0.)[x~"k]~,,~. L~k~*O"~; unique factorization in R.  allows us to describe E* .  We 

choose one representative from each associate class of irreducible polynomials in 

R. subject to the following restrictions: 

(1) each xl 'k, i E 5f, 1 <= k <= &(3") is chosen. 

(2) For each polynomial [ chosen, if f~J is an associate of [ for some ], then 

["~ = [. In this case if ,  if-" . . . . .  etc. will also be taken as representatives for their 

classes. 
Condition (2) above requires some justification; suppose f ~ =  uf where 

u ~ F(p,). Let m = order(o -j), ~" = or j. Then iterating m times gives f = [ ' "  = 
u • ~'(u)" ~'- '(u)"" r ' - ~ ( u ) / =  Nv~p.~/K(U)[, K = fixed field of ~-. Thus 

Nv tp .v r (u )= l ,  so by Hilbert 's Theorem 90 u =  u / r (v)=~, /o- i (u) ,  some 

u E F(O,). Now replacing [ by v[ gives "r(t,/) = t,[, as desired. 

Let ~ be the collection of a-orbits  of polynomials (which are not monomials) 

chosen in (2) above. Then we can write 

• . X ~  "k 

Both • and "3"-th power"  respect the outer decomposition in (**), so we 

obtain the following decomposition of X(n)/Y'(n):  

(***) x ( . ) / r ' ( . )  = v(,,)/v'(,,)@ Z z,(,,)@ x(,,, u).  

It follows immediately from [8, Theorem 2.3] that Z~ (n) is cyclic of order 3". 
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Also, the proof of Theorem 3 gives X(n, M) is cyclic of order 3 ~ where 3 ~ is the 

highest power of 3 dividing 2 [MI- 1. 

To describe the direct limit of the X(n)/Y'(n), observe that the natural map 

from X(n)lY'(n) to X(n + 1)lY'(n + 1) induces in (***) the obvious map on the 

first factor, and on the second and third factors the map induced by the "cubing" 

map from E*,/(E*~)3" to E~*÷,/(E2+1)3°+'. This respects the decomposition in the 

second factor, and embeds Z~ (n) into Z~ (n + 1). Thus the Z~ (n) generate a copy 

of Z(3 ~) in the limit, and there are cg such copies generated as 6e has cardinality 

We now consider the third factor of (***). By Lefnma A, any f ~ M remains 

irreducible in R.÷1 as long as it remains irreducible in Rn (p,÷l). Such an f might 

split in R, (0,÷1) and even further at later stages, but such splitting will eventually 

terminate (as can be seen by factoring jr in R, (O~), the ring obtained by adjoining 

all 3-power roots of unity to Rn). Hence we obtain: 

lira X(n)/Y'(n)~-lim Y(n)/Y'(n) ~ ~ Zi @E 

where each Z, is a copy of Z(3~), and X is a direct sum of cyclic groups. Now, 

arguing as in Theorem 3, we get: 

X(F~)3 = X(F3)@ Z @ E 

where Z = Z,~,Z~ is a divisible 3-group of rank 2 "0 and X is a direct sum of cyclic 

groups. 

This completes the proof of Theorem 5. 

REMARK. For the application to follow, we will need to know the precise 

structure of E. There is one cyclic factor in E for each o'-orbit of associate classes 

of irreducibles (excluding monomials) in lim Rn, and this factor has order 3 j 

where 3 i exactly divides 2 ° - 1 and a is the size of the orbit. Since orbits of all 

sizes exist and ~ has cardinality ~ = 2"% we conclude that X has 2 "° factors of 

each 3-power order. 

We are now ready to construct our last example. Let F be the field obtained 

from the 3-adic field Q3 by adjoining all p"-th roots of unity for all n and all 

primes p #  3. Using F as a base field we construct the field L = F~ as in Theorem 

5. Note that the results of Theorem 5 apply since L has no primitive cube root of 

unity, and adjoining 3"-th roots of unity to L produces an extension of L of 

degree ~b (3 n). 

Our field M will be an ultraproduct. We begin with the rational field Q, and 
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close it under the following construction: for any prime p ~  3, the p"-th roots of 

unity of Q produce an extension of degree ( p -  1)p~-l; we adjoin the corres- 

ponding extension of degree p~-i to Q (for all n). Let the resulting field be k, and 

note that k is of finite codimension in a field containing all p "-th roots of unity, 

p fi 3. Let M be a non-principal ultraproduct of countably many copies of k. We 

have: 

THEOREM 6. For all primes p, X(L)p and X(M)p have identical Ulm in- 
variants, including their divisible parts. These groups are divisible and isomorphic 
if p~  3, but X(L)3 and X(M)3 are not isomorphic. 

PROOF. First suppose p ~  3. Since L contains all pn-th roots of 1, X(L)p is 

divisible. M is of finite codimension in a field containing all p n_th roots of 1, and 

the codimension (in this case p - 1) is prime to p. The restriction-corestriction 

argument of [1, Theorem 3] shows then that X(M)~ is divisible. It is clear by 

inspection that X(L)p and X(M)~ are direct sums of ~ copies of Z(p®), so these 

groups are isomorphic. 

By Theorem 5, X(L)3 ~ X(F)3 ~) D ~) ~, where D is a direct sum of ~ copies 

of Z(3®), E is a direct sum of ~ copies of Z/3JZ, ] = 1,2,3 . . . . .  and F is the field 

obtained by adjoining all p~-th roots of 1 to Q3, p ~  3. We claim X(F)3 is 

divisible. To see this, observe that F is a direct limit of countably many fields E 

such that [E: Q3] = m < ~ and E has no primitive cube root of unity. By [9, 

Theorem 3, p. II-30], the Galois group of the maximal 3-extension of E is free 

pro-3 on m + 1 generators, so its dual X(E)3 is a finite direct sum of copies of 

Z(3®). We conclude that X(F)3 is divisible and, in fact, countable. Thus as 

abstract groups, X(L)3 ~ D ~)E;  its divisible rank is ~ and its Ulm invariants = 

at all finite ordinals. For X(M)3, it is clear that its divisible rank is also ~. We 

claim the invariants for X(M)3 are ~ at all finite ordinals. To see this, we note 

that the Ulm invariants of X(Q)3 are to at all finite ordinals as observed in 

[1]-[4]. Since k is obtained from Q by a sequence of extensions of degree prime 

to 3, the argument of [1, Theorem 3] shows that X(k)3 has Ulm invariant = to at 

all finite ordinals. By (2.1), X(M)3 has invariant = ~  at all finite ordinals. 

We now have that X(L)p and X(M)p have identical invariants for all p. 

However, X(M)3 is not a direct sum of cyclic and divisible groups by Theorem 1, 

so X(M)3 is not isomorphic to X(L)3. 

We have included both Theorems 4 and 6 because they are somewhat dual in 

nature. In Theorem 4 our two fields have character groups which have 

non-trivial reduced groups for all primes p; those reduced groups have identical 

Ulm invariants but are non-isomorphic for all p. In Theorem 4, the divisible parts 
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of the character groups differ for all p. In Theorem 6, the p-components  of the 

character groups are divisible and isomorphic for all p ~  3; the reduced groups 

are non-trivial only for p = 3, have identical Ulm invariants, but are not 

isomorphic. The divisible components  in Theorem 6 also match for p = 3. 
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